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Abstract

Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic
devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not
only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effect
make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also
influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and
mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity,
and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current
and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary
ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients
have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute
to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary
electrophoretic separations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction ference in electrophoretic mobilities between charged chem-
ical species in aqueous solution, whereas the electroosmotic
Microfluidic and lab-on-a-chip devices have attracted in- flow of the latter could reduce the analysis tifi3¢. Under
creasing interest over the last decade due to their advantagegieal circumstances, the electroosmotic flow profile across a
over macroscopic counterparts, such as increased efficiencycapillary is flat, and all the velocity variations are restricted
and throughput, and reduced analysis time and reagent conto the thin electrical double layer region adjacent to the cap-
sumption[1,2]. The performance of these miniaturized sys- illary wall. As such, there is negligible shear-induced dis-
tems depends on the precise control of fluids and samplespersion so that the molecular diffusion is the only limit to
through the network of microchannels. Generally, an elec- separation. However, in practice, many experimental factors
tric field is applied to induce electroosmotic flow of fluids can affect the flow patterns, which in turn reduce the separa-
and electrophoretic motion of chemical species in microflu- tion efficiency on account of the enhanced disper§e®].
idic devices. Electrophoretic separation is such an application|n this paper we study analytically the Joule heating effects
combining these two electrokinetic flows. It exploits the dif- on the electrokinetic transportations in capillary-based elec-
trophoretic separation systems.
* Corresponding author. Tel.: +1 416 978 1282; fax: +1416 978 7753, Joule heating results from current flow through the elec-
E-mail addressdli@mie.utoronto.ca (D. Li). trolyte solution when an electric field is applied to achieve
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electrokinetic flows in capillary electrophoresis. This inter- Axial temperature gradients could also arise from the
nal heat generation is taken away not only by the coolant variation of heat transfer conditiof27] or the varia-
surrounding the capillary (through either air or liquid con- tion of buffer conductivity along the capillari28]. The
vection and radiation as well), but also by the cold liquid latter may exist in the so-called sample pumping and
inside reservoirs connecting to the two ends of the capillary stacking processef29]. The variation of heat transfer
(through conduction). On neglecting the thermal end effects, condition along a capillary is often present in capillary elec-
Joule heating has been known to cause anincrease and aradi&ophoresis with thermostating, where a short length of the
gradientin the fluid temperatufg-11]. Forthis case, the pro-  capillary at each end must be left outside the thermostating
file of electroosmotic velocity remains plug-like in the bulk cartridge for the sample injection and detection, respectively
region despite the increased magnitude due to the drop of lig-[18,19] Xuan and Li[30] investigated the flow perturbation
uid viscosity{12]. However, both electrophoretic velocityand and the sample dispersion in such a thermostated capillary
molecular diffusion of analyte species become non-uniform electrophoresis. By assuming step changes of fluid temper-
over the channel cross-section. These radial non-uniformitiesature in regions with different heat transfer conditions, both
can cause the so-called Taylor—Aris dispersion of samplesnon-uniform electric field and non-uniform electroosmotic
[13,14] The problem of dispersion caused by the perturbed velocity along the capillary were found in order to meet
profile of electrophoretic velocity has been examined theo- the current and mass continuities. This modification of the
retically and experimentallj15-20] It was found that the  plug-like pattern of fluid electroosmotic flow could cause
thermally induced dispersion is small compared to that from significantly higher dispersion than that from parabolic-like
molecular diffusion except at some extreme conditions. This electrophoretic flow profile due to radial temperature
phenomenon is attributed to the generally small tempera- gradients. Essentially, the increased dispersion caused by
ture difference across the capillary lumen. Only till recently axial temperature gradients is identical to that caused by
has the extra dispersion due to the radial non-uniformity of the non-uniformity of zeta potential along the capillary
molecular diffusion been taken into consideration in Xuan [31-34]
and Li's analytical modg21]. More recently, Peterson et al. In the next section, the mathematical formulation of
provided a closer look on Joule heating effects in microchip- Joule heating effects on electrokinetic transportations in
based and capillary-based electrophoretic separation systemsapillary electrophoresis is presented. A uniform heat
[22]. These authors argued that the main influence of Jouletransfer condition is assumed along the capillary, corre-
heating effects on separation efficiency is via the radial tem- sponding exactly to capillary electrophoresis with free-air
perature profile, not the overall temperature rise in the buffer cooling. Analytical formulae for the perturbed tempera-
solution. ture field, applied electric potential field and flow field
In the presence of reservoir-based thermal end effects,are derived in order. Then, the transient concentration
however, Joule heating leads to both radial and axial temper-field of sample species is analyzed based on the well-
ature variations in the electrolyte solution. Through a com- developed Taylor—Aris dispersion theory. The inclusion
bined experimental and numerical study of the electroosmotic of the temperature dependence of fluid properties in the
flow in a free-air cooled capillary, Li's group observed sharp formulation should make the present model applicable to
temperature drops near the ends of the capillary and a highmost practical capillary-based electrophoretic separation
temperature plateau in the middle sect{@3,24] Due to systems.
the temperature dependence of electric conductivity of the
liquid, these axial temperature gradients make the electric
field non-uniform along the channel. As a result, axial pres- 2. Mathematical formulation
sure gradients are induced in order to maintain the fluid
continuity during the flow. This numerical prediction was ~ Consider a long cylindrical capillary of internal radius
confirmed by the observation of concave—convex—concaveRi (i-e., liquid domain) and lengtho. The outer radii of
fluid velocity profiles from the inlet to the outlet of the the glass wall and the polyimide coating (i.e., the total ra-
capillary. In addition, Yang's group conducted a numeri- dius of the capillary) areRy and Ry, respectively. Note
cal analysis of the thermal effect on electroosmotic flow thatLo > Rp is available in typical capillary electrophore-
and electrokinetic mass transport in both cylindrical and slit Sis. Owing to the axisymmetric nature, a 2D cylindrical
microchannelg§25,26] They predicted a concave fluid ve- coordinate systemr(2) is adopted with the origin at the
locity profile in the main channel with the assumption of capillary inlet andx-axis along the capillary centerline.
a uniform electric field along the channel. Unfortunately, According to previous studies, the temperature field in
the complicated and time-consuming simulations available capillary electrophoresis approaches steady state at several
so far could not provide a straightforward understanding of second$§l7,24,35] The sample separation process may, how-
Joule heating effects on electrokinetic transportations. More- €ver, take up to tens of minutes to finigdj. Therefore, we
over, Joule heating effects on the transport of Samp|e ZoneStart with the Steady state temperature and flow fields. Af-

in Capi"ary e|ectroph0retic Separations have yet to be Stud-ter that, the transient development of concentration field is
ied. analyzed.
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2.1. Temperature field yields:
2T A7 T 2
As mentioned above, the Joule heat generated inside thed” _ wdl’ _ Zheq(f_ To) + roll +ofT — To)l E -0
buffer solution is taken away in two ways: one is through the dz2 wdz kR ki
convective and radiant cooling from the capillary outer sur- (7)

face_, andthe otheris through the conductive cooling from f[he where the surface temperatuféR;, 2) in Eq. (4) has been
capillary ends (i.e., the_rmal end effects). Thgs_e two cooling approximated td_"(z). The mean fluid velocity in Eq. (7) is
methods are reflected in the boundary conditions of the en- 5 ¢qnstant in a uniform capillary according to the condition
ergy equation. Neglecting t_he radial convective heattransport j¢ o oo continuity, and will be specified later in this paper.
[36], the fluid temperature is solved from: Note also that the local electric field is parallel to the capillary
axis and therefore dependent only oThe requirement of

2 2
}3 ral T _ uz 9T + ME® =0 (1) current continuity through the uniform capillary leads to
ror or 972 o) 9z ki _

AE = do[l 4+ oT — TQ)|E = J 8)
T(r,0)=T(r, Lo) = To (2)

whereJ denotes the electric current density to be determined

aT i ion.
5(0’ =0 3) in the nexisectmn Then, we can_assume
o[l + o(T — To)| E? = J?[1 — oT — To)] /20 €)
aT h _
a—(R|, 7) = —?[T(Rh z) — To] (4) for small values ofx(T — Tp), say <0.25. For even larger
r |

temperature rise, however, higher order terme(@f — 7o)
whereE is the local electrical field strengthy the axial flud ~ @re indispensable in EE), which will greatly complicates
velocity, a1, ki and s the thermal diffusivity, thermal con-  the derivations hereafter. By the definitionst z/Rj and
ductivity and electrical conductivity of the buffer solution, © = (T — To)/AT and the substitution of E¢9), Eq.(7) is
respectively. A linear model is employed to describe the tem- Written into the following non-dimensional form

perature dependence of electrical conductivity 20 R dO heqR)
2——< +aAT>(~)+1=0 (10a)
M = holL +a(T — To)] g 927 wdz L\ k
_ | . J2RY
whereg is the electrical conductivity at the room tempera- AT = (10b)
tureTp (298 K), andx the temperature coefficient. The equiv- Moki
alent heat transfer coefficiengq is given by: Noting the Dirichlet boundary conditions in E(R), we
. can obtain
eq = Rl—l[l In (RW) + 1 (Rp) + 1} ©) o L[, €1 - DeHD pehl — 1yehi”
kw Ry kp Ruw hRp (2) = 52 o —

wherek,, andky are respectively, the thermal conductivities (11a)
of the capillary wall and polyimide coating, ahdhe surface
heat transfer coefficient between the coolant and the capil-
lary outer surface. Here we have assumed a constant thermaB = \/ZheqR|/k| + aAT (11b)
conductivity because the thermal conductivity of aqueous so-
lution is much less sensitive to temperature change in com- 1/uR\? s 1 uR
parison with the electrical conductivity. Within the range of 1~ \/ 2 (m) tA 2 (Ot|> (11c)
the temperature change considered in this work, the variation
in thermal conductivity is negligible. 1/uR\? 1 /uR

In typical capillary electrophoresis the temperature vari- A2 = {/ <a|> B2 > (m) (11d)

ation overr is much smaller than that in the axial direction
[21,22,30] Thisindicated = T(2) only, as agood approxima-  whereL =Lo/R indicates the non-dimensional length of the
tion. Hence, the local fluid temperature can be replaced by thecapillary, andL > 1 is implied. Note thaheqR/k in Eq.
cross-sectional averad#z) (at constanz). We acknowledge  (11b)anduR,/«; in Egs.(11c)and(11d)represent, respec-
that this approximation may not be valid for capillary elec- tively, the so-called Biot number and Peclet number. Ordi-
trophoresis with thermostatin@,10]. In such cases, how- narily, @R|/a;) = O(B8) andg=0(1). The fluid temperature
ever, the sample dispersion induced by the temperature jumpis asymmetric about the middle section of the capillary since
between thermostated and unthermostated regions is moré\; # A, due to the flow effect. Noting exp&) — 0 unless
pronounced than that due to thermal end eff§&®§. Aver- x is small, the fully developed fluid temperature is approxi-
aging each term in Eq1) over the capillary cross-section mated to 142. This temperature is dependent on the electric
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current density] that will be determined in the next section.
On assuming a positive in Eq. (11a—d) the thermal en-
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length, so is the fully developed fluid temperaturg?i(hon-
dimensional) obtained earlier (see E(fOb)and(11b)). As

trance length that corresponds to the t.emp(_—:‘rature reachinghe temperature coefficieat— 0, J approachesoEg repre-
99% of the fully developed temperature is estimated as 4.605senting the electric current density without considering either

RI/A; (seeAppendix Afor the computation). Similarly, the

the temperature dependence of electrical conductiwity()

length of thermal exit region, where temperatures undergo or the Joule heating effects. At this stage, the electric current
rapid variations to adjust to the fluid temperature at the outlet density is available from Eq15). However, there is still one

reservoir, is given by 4.608,/A;. Since A > Ay at a positive
u (see Egs(l1lc)and(11d)), the axial temperature profile is
actually inclined to the direction of fluid flow, i.e., the down-
stream.

2.2. Applied electric potential field

In the above derivation of temperature field, the electric
current densityl in Eq. (8) remains unknown. We can deter-
mineJfrom the current continuity since the axial temperature
distribution is now available. Rearranging K8) leads to:

_—dp _ J[1—o(T —To)]
T odz o
where ¢ is the applied electric potential. E¢L2) can be
rewritten as

do  —JR (1 - aATO)
dz Xodo
where® = ¢/¢pg andpg = EglL g with Eg being the electric field
strength externally applied to the capillary. Integrating Eqg.

(13) along the channel witlb(0) =1 and®(L) =0 (i.e., the
capillary outlet is grounded) gives rise to

E (12)

(13)

hodo
JR)
aAT (el — 1)(ef2l —1)(1/A1 + 1/Ap)
=L- B2 {L - A2+A2)L _ 1 ]
(14a)
A0Q0 aAT
J—RI =L (1— ﬂz) (14b)

whereL > 1 and hence‘®! = 0(e*2) >> 1 are neces-
sary in making the approximation in E.4b) After recov-
ering AT andg in Eq. (14b), we can get a compact formula
for the electric current density

RIE
1— [1— 2gE,XE0
heq

The terms within the square root imposes a limit to the
applied electric fieldeg, beyond which the solution td is
unavailable. This limit is attributed to the linear approxima-
tion made in Eqs(9) and(12) which differs from the limi-
tation due to the so-called thermal run-awa$,21,30] One
can also see thatin Eq.(15)is independent of the capillary

l’leq

J =
R Eg

(15)

unknown parameter in the temperature field (sed Ecp—d)
and thus the electric field (see HG2)), i.e., the mean fluid
velocity u. We will present its formula in the next section.

2.3. Flow field

Similar to the treatment of thermal conductivity in energy
Eqg. (1), we assume a constant density of the buffer solu-
tion in the analysis of flow field. Since we are only con-
cerned with the steady-state flow field, the transient terms
in Navier—Stokes equations drop off. The inertial terms are
also neglected because fluid flows in capillary electrophore-
sis are generally limited to small Reynolds numbers. Noting
that the length scale in the axial direction is much larger than
that in the radial direction, the axial velocity componept
has to be much higher than the radial compongim order
to satisfy the continuity equation. In other words, the present
fluid flow is nearly unidirectiong]37]. After comparing the
orders of magnitude, Navier—Stokes equations and the con-
tinuity equation give rise to:

1 1

JEDEL 6
ror or uw 0z

op

X _0 17
ar (47
190 ou,

T _—(u)+—=0 18
r 8r(m )+ 0z (18)
uz(Ri, z) = ueo (19)
ou,/or(0,z) =0 (20)
ur(0,z2) =u,(1,27)=0 (22)

where p is the hydrodynamic pressure, and the slip ve-
locity ugo in Eq. (19) is calculated from the Helmholtz—
Smoluchowshi formulg38]:

—etE

Ueo = (22)
wheree and u are the dielectric constant and the dynamic
viscosity of the buffer solution, respectively, andhe zeta
potential. These properties are usually dependent on the fluid
temperature, and thus vary along the capillary. This indicates
Ueo=Ueo(2). The above slip boundary condition applies to
electroosmotic flow with an infinitely thin electric double
layer, which is an excellent approximation in typical capillary
electrophoresis.

Eq.(17)indicatep = p(2) only. However, @/dzin Eq.(16)
is not necessarily a constant, say 0 for a purely electroosmotic
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flow, representing the variation of temperature induced pres-
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While numerical methods (e.g., Gaussian quadrature) can

sure gradients along the capillary. Thus, the right hand side be employed to calculate the integrations in @) for fluid

term of Eq(16)is independent af Integrating Eq(16)twice

with respect ta gives
2
()]

At this point, do/dz remains unknown. We average each
term in Eq.(23) over the capillary cross-section, and make
some rearrangement to get:

8u(z)
RY

-
R

Rf dp
4u(z) dz

uz(r, 2) = tteo(z) — (23)

d
= lued?) — i (24)
Z
Integrating Eq(24) along the capillary length and noting
p(0) =p(Lo) =0 (i.e., no external pressure gradient is applied
to the two ends of the capillary) yields:

Lo Lo
- /O H(@ued2)dz /O u(2)d:

So, g/dz is now accessible from E@24), and varies along
the capillary due to Joule heating and thermal end effects.
Further from Eq.(23) we obtain the final formula for the
axial fluid velocity

uz(r, 2) = teo(z) — 2[ueo(z) — ulll — (r/Ri)?]

One can see that E(R6)is consistent with Ghosal’s general
formula to the leading order for electroosmotic flow in a mi-
crochannel of slowly varying cross-section and wall charge,
where the lubrication approximation has been empl¢gef
Therefore, Joule heating and thermal end effects not only al-
terthe local electroosmatic velocity (the first term on the right
hand side of Eq(26)), but also induce axial-position depen-

(25)

(26)

dent pressure-driven flows (the second term on the right hand

side of Eq(26)) in capillary electrophoresis. It is natural that

the velocity entrance length is dependent on the thermal en-

trance length. The radial velocity componepntcan be ob-
tained by substituting Eq26) into Eg.(18) and integrating

() - ()]

Now, let us specify: in Eq.(26) by considering the tem-
perature dependence of fluid properties. The calculation of
dueo/dz in Eq. (27) is straightforward and omitted here for

,
R

-
R

1 dueo

2 dz

uy(r,z) = 27)

compactness. As dilute aqueous solutions are often used
in capillary electrophoresis, we assume their properties are
identical to water. Most of these properties are temperature

properties of any forms of temperature dependence, we con-
sider only the temperature dependence of viscosity in this
paper. Both the dielectric constant and the zeta potential are
assumed constant so as to obtain a relatively simple formula
for the mean fluid velocity:.. The formula of fluid viscosity
with respect to temperature is given [8y:

W(T) = Aexp(?)

where A=2.761x 10 Kgm~1s! and B=1713K. Ex-
panding the exponential term in E@9) as a Taylor series
aroundT = Tg and retaining only the first two orders yield:

(29)

m(Z) = poll — yO(Z2)] (30a)
BAT
Y= Tg (30b)

where o indicates the viscosity at the room temperature.
Similar to the approximation made in E®), Eq.(30a)and
(30b)is only valid for small rises of fluid temperature. Sub-
stituting Eqs(11a—d) (12) and(30a)and(30b)into Eq.(28)
and in turn integrating it gives:

- {1

y [ 1(eME—1)(e"2t—1)(1/A1+1/A2)]) "
e )
y {_ ““EO] (31a)

Mo
_ 1 etEo
X~ - 31b
! 1—)///32{ Mo] (310)

whereL > 1and é1L = 0(e*2L) > 1 are indispensable to
attain the simplified formula in E¢31b) The square brack-
eted term on the right end of Eg&1a)and (31b)is the
electroosmotic velocity without Joule heating effects, whose
prefactor, always larger than 1, reflects the flow enhancement
effect of the fluid temperature rise. Moreover, the capillary
length has hardly any influence on the flow rate unless the cap-
illary is short (i.e., thermal end effects become pronounced),
which is the intrinsic advantage of electroosmotic flow. The
jnduced pressure distributig{z) along the capillary can be
integrated from Eq(24), and is omitted here.

dependent and thus position dependent, here. Noting the def2-4. Concentration field

inition of the slip velocityueo in Eq.(22), we can rewrite Eq.
(25)as:

—s¢ L E(2)dZ
Ju(z)dz

1,7:

(28)

The conservation of any chemical speciespbeys the
advection-diffusion equation

dc

at +(U+ Uep) VC: V(DVC)

(32)
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whereuis the fluid velocity vectot Jepthe electrophoreticve-  where K indicates the well-known dispersion coefficient

locity vector of a chemical species, abdhe molecular diffu- which is equivalent to but typically higher than the diffusion
sivity. Stokes—Einstein equatiah=kgT/6ria is often used coefficient in molecular diffusion. In the absence of Joule
to calculate the diffusion coefficient, whekg is the Boltz- heating effectsK is reduced tdg denoting the diffusivity

mann’s constant anathe radius of ionic species. The elec- at the room temperature. Joule heating affects the disper-
trophoretic velocity may be estimated from Nernst—Einstein sion of samples via the enhancement of molecular diffusion
equationUep=Dz,eEkg T, wherez, is the valence of ions  and the induced pressure-driven flow of fluid. In practice, the
andethe charge of a proton. Then, we find perturbed electrophoretic velocity profile caused by radial
temperature gradients contributes to the sample dispersion
(33) as well[30].
Here, we consider two types of transport processes of sam-
Therefore, the sample transport is coupled with temperaturepPles that often take place in microfluidic devices. In the first
and velocity fields. This coupling makes it difficult, if not ~case, the capillary is initially filled with the solvent only, and
impossible, to solve foc in Eq. (32) analytically. We will the sample of uniform concentratiogis allowed to enter the
demonstrate in the next section that both thermal and ve-capillary attimet=0 (i.e.,c(#, 0) = o). Then, the solution to
locity entrance lengths are much smaller than the capillary Eds.(37a)and(37b)is:
length. Moreover, the initial sample plug is generally a dis-
tance away from the capillary inlet in capillary electrophore- —_ . ¢ (Z - “mf) (38)
. X N 0
sis. Therefore, the entrance region has negligible influence 2V Kt
on the transport of samples.
In the fully developed region, the non-dimensional fluid Where erfc) denotes the complementary error function, and

zveE

ep = 6rua

temperature is ;B/Z as provided above, the 5||p V8|0Ct!éo the axial coordinate has been recovered from=z— unt.
in Eq (22) and the e|ectroph0retic Ve|0cityep in Eq (33) The intrinsic feature of the Complementary error function
are respectively specified as: shows thatthe sample front advances with the mean migration
velocity uy, and diffuses to the downstream with a diffusion
Voo = — Jet 1— aAT/p? (34) coefficientK. Behind the front, the sample concentration is
uoro 1—y/pB2 uniformly cp and the dispersion due to molecular diffusion
) disappears. In the second case, a sample plug of uniform
o= Jzve  1—aAT/B (35) concentrationcy and width 2ug is initially injected to the
™ Brpoaro 1— y/p2 capillary inlet (i.e.,c(0, z) = co at 0< z < 2wo). For this

Noting J(1 — e AT/A%)/0>doR/L = Eg from Eq. (14a) case, the solution to Eg&7a)and(37b)is given by:

e O D e 10 (o) ()|
y 9 Y ) 2Kt 2J/K1

velocity of the chemical species, = u + Uep, EQ.(32) can
where erfk) denotes the error function. The summation of

be rewritten as:

e r\2| ac two error functions in Eq(39) ensures that the sample is
E + (u — Ueo) |1— 2(R|> ] 921 kept in a zone when it moves with the velocity,. Every-
where outside this zone, however, the sample concentration is
92c 19 / dc zero. This feature gives rise to the method of electrophoretic
= Dm azf Dm; ar (Var> (36) separations. In addition, the sample zone is expanded to both

downstream and upstream directions as if it diffuses with a
whereDy, denotes the diffusivity in the fully developed re- diffusion coefficientk. In this paper, we will focus on the
gion andz; =z — unt. Taylor first used Eq(36) to study the second case. The effects of Joule heating on the sample zone
dispersion of solute through a tube due to a combined effecttransport are analyzed below.

of diffusion and convectiofil3]. Since then numerous re- It is clear from previous analysis that Joule heating ef-
lated papers have appeared in the literafile40,41] It is fects enhance both the mean fluid veloaityn Egs.(31a)
demonstrated that the mean concentration over the capillaryand(31b)and the electrophoretic velocityepin Eq.(35), so
cross-sectiorg, to a first approximation, is governed by an does the mean migration velocify, of the chemical species.
equation of the form: Therefore, the sample zone will take less time to arrive at the
_ o detector that is fixed at a distance away from the capillary
e 9% (37a) outlet. In other words, Joule heating effects reduce the analy-
or azf sis time of capillary electrophoresis. However, Joule heating
_ 22 effects also contribute to the sample dispersion that is de-
(u — Ueo)“R (37h) pendent on/Kr in Eq. (39). If the elution time ty, for the

K = Dm +
" 48D sample to migrate from the inlet to the detector is taken into
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consideration, we find

Dm

Um

( — Ueo)®R?

v Ktm =

Let (40)

where Lget is the distance from the capillary inlet to the
detector. Clearly, the first term in the square bracket repre-

sents the dispersion due to the increased molecular diffusion,
while the second one gives the dispersion due to the pressure-

driven flow caused by thermal end effects. As demonstrated
in Appendix B the increase in molecular diffusion is partly
balanced by the increase in migration velocity. Consequently,

the real increase in the sample dispersion is reflected solely by

the increase of fluid temperature. The magnitude ef Ue,

in Eq.(40)is very sensitive to the capillary length, and could
be negligible if the capillary is sufficiently long where thermal
ends effects are essentially small (see &lppendix B. For
short capillaries like those microfabricated in lab-on-a-chip
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Electric current (mA)

0

15 20 25 30 35
Applied electric field E, (KV/m)

40

Fig. 1. Comparison of the electric current through the buffer solution with
(solid line) and without (dashed line) considering Joule heating effects, re-
spectively.

devices, however, the sample dispersion due to the induced

pressure-driven flow has to be considered.

3. Results and discussion

In this section, we examine quantitatively the Joule heat-
ing and thermal end effects on capillary electrophoresis. The
resultant alterations in the steady state temperature field,
applied electric potential field, flow field, and the tran-
sient concentration field are demonstrated with the analyt-
ical formulae derived above. Unless otherwise indicated,
fluid properties and working parameters used in the cal-
culations are: thermal conductivitiek,=0.6 Wnm 1K1,
ky=15WnT1K-1 and k,=0.15WnT1K™1; electri-
cal conductivity, 20=0.15Snm! and «=0.02K™1; di-
electric constants =80x 8.854x 10~ 2CV-1m1; radii,

R =50pm, Ry=160pum and R,=180um; Zeta po-
tential, ¢=—30mV, surface heat transfer coefficient,
h=130WnT2K~1 [9,18,19,22] Note that the elec-
trophoretic velocity is calculated from E(B5) without the
need of using the electrophoretic mobility. We first calculated
the electric current density from E(.5). The mean fluid ve-
locity was then found from Eq$31a)and(31b) After that,
the fluid temperature in Eq11a—d)was obtained. The ax-
ial fluid velocity in Eq.(26) and the radial fluid velocity in
Eq. (27) were therefore available. Finally, the sample con-
centration was predicted from either E€39) or (40). More
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Fig. 2. Axial distributions of the average fluid temperature (solid line) and
the local electric field (dashed line). The externally applied electric field is
Ep =36 KV/m. A 5cm long capillary is chosen for an illustration.

ery electric field. Moreover, the higher the electric field, the
larger are the elevations in the fluid temperature and the elec-
tric current. This phenomenon has been observed previously
[24,27,42] Note that the increase of electric current (actually
the electrical conductivity) has been a method to estimate the
rise of fluid temperature for a long tinj&8,19,43]

Fig. 2 shows the axial distribution of the average fluid
temperature at an applied electric fidlg=36 KV/m in a

accurate values of the electric current density and the mean5cm long capillary. Note that the typical capillary length

fluid velocity can be solved simultaneously from the coupled
Eqgs.(14a) (14b), (31a)and(31b), which are necessary on the

in capillary electrophoresis is tens of centimeters. For
the capillary-based electrophoresis that takes place in a

circumstances of short capillaries. These values were used tdab-on-a-chip device, however, the channel is usually several

predict the axial pressure distribution from Eg4).

Fig. 1shows the electric current through the buffer solution
at different electric fields. In the absence of Joule heating ef-
fects, the electric current Eorr RZ is simply a linear function
of the applied electric field. On considering the Joule heating
effects, Eq(15) predicts a higher electric curre;fvtRl2 atev-

centimeters in length. We have pointed out earlier that the
fluid temperature in the fully developed region is indepen-
dent of the capillary length if this length is much larger than
the capillary internal diameter. As the capillary is shortened,
reservoir-based thermal end effects become pronounced. The
fluid temperature in the main part of the capillary will thus be
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Fig. 3. Mean fluid velocity at different applied electric fiel#s. This ve- Fig. 4. Longitudinal distributions of the axial fluid velocity at the capillary

locity has been normalized by the value without considering Joule heating wall (solid line) and along the capillary axis (dashed line), respectively. All
effects. The curve shows the enhancement of fluid velocity due to Joule working parameters are identical to thosé-ig. 2
heating effects. All working parameters are identical to thog&idn2

Fig. 2) is partly counterbalanced by the higher fluid viscosity

decreased. Identical with our previous numerical and exper-due to the temperature drop (see the solid linEim 2). As
imental studieg21,24], the axial temperature profile is not ~aresult, the slip velocity is higher close to the capillary ends,
symmetrical, inclined to the downstream due to the advective where the axial fluid velocity along the capillary centerline is
effect of fluid flow. Sharp temperature drops are predicted lower than the rest. In other words, axial pressure gradients
close to the capillary ends while a high temperature plateau are brought about to meet the requirement of mass continuity.
exists in the middle section. While the thermal entrance The sine-shaped pressure distribution along the capillary is
length is of approximately 20 times of the capillary internal displayed inFig. 5. Positive pressure gradients appear close
radius, the thermal exit length is of only about five times of to the capillary ends making the local fluid velocity profile
the capillary internal radiusFig. 2 also displays the axial ~— concave over the cross-section. A negative pressure gradient
distribution of the local electric fielf. In order to meetthe  exists in the middle section of the capillary so that the veloc-
current continuity, the electric fields close to capillary ends ity profile is slightly convex, which has been experimentally
have to be significantly higher than the nominal electric fiend observed24,44] Fig. 6 demonstrates different radial pro-
Eo applied externally. In the middle section of the capillary, files of the axial fluid velocity at different positions along the
however, the local electric field is a little bit lower thEp as capillary. The convex curvature in the middle section is much
the total voltage drop over the whole capillary is fi{80]. smaller than the concave curvature close to capillary ends.
Fig. 3shows the enhancement of mean fluid velocity (i.e.,  Fig. 7 shows the distribution of sample concentration
the flow rate per unit cross-sectional area) in a 5cm-long averaged over the cross-sectien,when the sample zone
capillary due to Joule heating and thermal end effects. This
velocity has been normalized by the value without consid- 160
ering Joule heating effects. Therefore, the normalized fluid 140
velocity corresponds exactly to the prefactor of the right hand . 120
side term in Eqg(31a)and(31b) Similarto the trend of elec- & 100 -

tric current with respect to the applied electric fi€lg, the = 80
mean fluid velocity is increased more significantly at higher £, |
electric fields[24,27,42] Therefore, Joule heating induced & , |
fluid temperature increase can enhance the throughput anda
reduce the separation time of capillary electrophoresis. For @ 20}
example, aEp =36 KV/m, the average fluid temperature in 123 0
the main part of the capillary is increased by only 5% (from — 'jz |

298to0 313.5K, seEig. 2). However, the mean fluid velocity

is increased by more than 40%. %0 ' ' ' '
Fig. 4shows the longitudinal distribution of axial fluid ve- 0 sz - 8 4 s

locity u, in a capillary. Both the velocity along the capillary ial position z (om)

axis and the one at the caplllary wall (I'e" the S|Ip VeIOCIty Fig. 5. Axial distribution of the pressure induced by Joule heating and ther-

in Eq. (22))_are demonStrateq- |_n regions close to capillary mal end effects in capillary electrophoresis. All working parameters are
ends, the rise of local electric field (see the dashed line in identical to those irfig. 2

—
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Fig. 6. Radial profiles of the axial fluid velocity at two different positions  Fig. 8. Mean concentration over the cross-section with respect to the elution
of the capillary. The dashed line shows the profile one internal radius away time when the sample zone passes by the detector. The solid line denotes the
from the capillary inlet. The solid line gives the profile in the middle of the sample transport with the consideration of Joule heating effects. The dashed
capillary length. All working parameters are identical to thosEim 2 line corresponds to the case without Joule heating effects. The detector is
0.5cm away from the capillary outlet. All other working parameters are

migrates through the capillary. As the total mass of the sampleidentical to those ifFig. 7.

is conserved during the transportation, the area underneathf h le when i by ad fixed i

every “pulse” remains invariant. Consequently, the sample ofthe sample w en It passes by a detector fixed at a |st§1nce

zone becomes wider if its peak concentration is lowered, away from the capillary outlet. On account of Joule heating
|8ffects, it takes much less time to transport the sample to the

meaning that the sample is dispersed. One can see that Jou
heating effects make the sample zone move faster. Also, thel€tector. Also, the sample zone passes by the detector more

sample dispersion is more significant after the same elution AUICKly than that without Joule heating effects. However, we
time, which can be identified from the decrease of the peak notice that the peak concentration at the detector is slightly

concentration (solid lines) compared to that without Joule lower (i.e., the sample zone is wider, and thus has larger

heating effects (dashed lines). Whereas the increase of migradiSPersion) when Joule heating effects are considered.
Fig. 9 shows the comparison of the theoretical (solid

tion velocity of a sample could reduce the separation time in dth ) | bol ) il
capillary electrophoresis, the larger sample dispersion might €UTV€) and the experimental (symbols) concentration profiles

decrease the separation efficiency. In order to figure out this,

Fig. 8compares the mean concentration and the elution time g
= 0.9
bt
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0 1 2 3 4 S Fig. 9. Comparison of theoretical (solid curve) concentration profile of
Axial position z (cm) sample passing by the detector with that observed in Delinger and

Davis’s experimentg45]. The peak height of the experimental pro-

Fig. 7. Mean concentration of a sample over the cross-section at different file is assumed the same as that of the theoretical profile while the
times. The solid lines indicate the distributions along the capillary with the height of the base line is set zero. Working parameters different from
consideration of Joule heating effects. The dashed lines are the distributionsthose given in the text includegg =25KV/m, Lo=60cm, Lget=51cm,
without Joule heating effects. The charge and radius of iops3s-1 and
a=0.8 nm, respectively. The width of the initial sample plug is 5 internal radii
(2wo = 5Ry), and its concentration i = 1. All other working parameters

are identical to those iRig. 2

R =37.5um, Ry =167.5um, R, =187.5um, the width of the initial sam-
ple plug 2vg = 4.4mm, EO mobility 5.28< 10 8m2V-1s1 at 22°C,
electrical conductivityrg =0.263 Sn1! at 22°C, and molecular diffusiv-
ity Do=1.25x 10-9m?s~1 at 22°C [45].
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when the sample (acetone as the marker of electroosmoticAppendix A

flow [45]) passes the detector. The experimental data were

taken from Delinger and Davis's measurements (middle left ~ According to its definition, the non-dimensional thermal
subfigure inFig. 7 of ref.[45]). As these authors did not pro-  entrance length is solved from

vide the scale of their concentration data, we assumed that

the peak height of the experimental profile coincides with gq1 _ 1 [, (€'t — 1etdllma 4 (efek — 1)etr”

that of the theoretical profile while the height of the base ~~ g2 B2 gldatAz)l 1

line is set to be zero. Fromig. 9 one can see that both the (A.1)
shape of concentration profile and the elution time predicted

from the proposed model in this paper are in close agree-

ment with the experimentally measured profile. Therefore, = Rearrange EqA.1),

the present model provides accurate evaluation of the Joule

heating effects on electrokinetic transportation in capillary gg_1_
electrophoresis. 1— e~ (ArtA2)L

efAZ(S _ efA1L7A28 + eAl(SfL) + eA;L(S*(A1+A2)L

(A.2)

4. Conclusions
Noting L > § and L > 1, we neglect all exponential
Inideal capillary electrophoresis,the profiles of fluid elec- terms in\/olving the power of-L. Then, the last equation
troosmotic flow and species electrophoretic flow are both js reduced to
plug-like. Molecular diffusion is the only source of sample
zone broadening. In practice, however, many factors can af-e~12% = 0.01 (A.3)
fect the above flow patterns, of which Joule heating is one ] ]
that always exists. We have developed an analytical model to |t is now straightforward to get
study Joule heating and thermal end effects in capillary elec-
trophoresis. By de-coupling the energy equation and the mo-(S =In100/4; (A-4)
mentum equation, close-form formulae have been derived for
the steady state temperature field, applied electric potential
field, pressure field, velocity field and the transient concentra-
tion field. We have also obtained compact analytical formulae
for the electric current and the mean fluid velocity (i.e., the
volume flow rate per unit cross-sectional area). These for-
mulae could provide a clear understanding of Joule heating
and thermal end effects on the transport of heat, electricity,
momentum and mass species in capillary electrophoresis.
With the analytical formulae presented in this paper, we
have demonstrated graphically that, due to the thermal end
effects, sharp temperature drops exist close to capillary ends, 1+ AT/ Tof?
where electric fields rise significantly. Axial-position depen- Dm = 01_7/132
dent pressure gradients have to be induced to realize the mass v
continuity. As aresult, concave—convex—concave fluid veloc- whereDg = kg To/6r 0@ indicates the diffusivity at the room
ity profiles appear from the inlet to the outlet of the capillary. temperature. The summation of E¢31b)and(35)leads to
These predictions are consistent with our previous numericalthe mean migration velocity of chemical species
simulation and have already been verified experimentally. In
addition, Joule heating effects enhance the transport of sam-, - — 4, 1 (B.2)
ples, which could reduce the analysis time in capillary elec- 1-y/B?
trophoretic separations. However, Joule heating and thermal
end effects also increase the sample dispersion, and thus dexg = —
crease the separation efficiency. Ko

whereu is exactly the migration velocity in the absence of
Joule heating effects, and Hd.4b) has been invoked in the
Acknowledgement manipulation since. >> 1 in typical capillary electrophore-
sis. For short capillaries like those fabricated in a microchip,
Financial support from the Natural Sciences and Engi- however, full formulae for both the temperature field in Eq.
neering Research Council (NSERC) of Canada, through a(11a)and the electric field in Eq14a)have to be used. The
research grant to D. Li is gratefully acknowledged. dispersion due to molecular diffusion in E40)is now spec-

Recovering the dimensional form and evaluating the natu-
ral logarithm finally gives rise to the thermal entrance length
provided in the text.

Appendix B
Noting the non-dimensional fluid temperature in the fully

developed region is B, the diffusion coefficient in this re-
gion is calculated as:

(B.1)

e¢Eo n zvekEp

B.3
6roa (B-3)
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ified as:
D D
LY S \/OLdet(l + AT/ Top?) (B.4)
Um uo

Therefore, Joule heating effects increase the diffusion in-
duced sample dispersion via only the rise of fluid temperature.
Also from Eq.(14b)whenL > 1, the slip velocity in Eq(34)
through a long capillary is reduced to

eCEp 1

no 1—y/p?
which is identical to the mean fluid velocityin Egs.(31a)
and (31b). As a result, the dispersion due to the induced

pressure-driven flow in E§40)is negligible if the performed
capillary is sufficiently long.

Ueo = — (B.5)
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