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Abstract

Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic
devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not
only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects
make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also
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nfluenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, mom
ass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potent
nd pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the ele
nd the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close
nds, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressu
ave to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both c

o the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time
lectrophoretic separations.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Microfluidic and lab-on-a-chip devices have attracted in-
reasing interest over the last decade due to their advantages
ver macroscopic counterparts, such as increased efficiency
nd throughput, and reduced analysis time and reagent con-
umption[1,2]. The performance of these miniaturized sys-
ems depends on the precise control of fluids and samples
hrough the network of microchannels. Generally, an elec-
ric field is applied to induce electroosmotic flow of fluids
nd electrophoretic motion of chemical species in microflu-

dic devices. Electrophoretic separation is such an application
ombining these two electrokinetic flows. It exploits the dif-
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ference in electrophoretic mobilities between charged ch
ical species in aqueous solution, whereas the electroos
flow of the latter could reduce the analysis time[3]. Under
ideal circumstances, the electroosmotic flow profile acro
capillary is flat, and all the velocity variations are restric
to the thin electrical double layer region adjacent to the
illary wall. As such, there is negligible shear-induced
persion so that the molecular diffusion is the only limi
separation. However, in practice, many experimental fa
can affect the flow patterns, which in turn reduce the sep
tion efficiency on account of the enhanced dispersion[4–6].
In this paper we study analytically the Joule heating eff
on the electrokinetic transportations in capillary-based e
trophoretic separation systems.

Joule heating results from current flow through the e
trolyte solution when an electric field is applied to achi
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electrokinetic flows in capillary electrophoresis. This inter-
nal heat generation is taken away not only by the coolant
surrounding the capillary (through either air or liquid con-
vection and radiation as well), but also by the cold liquid
inside reservoirs connecting to the two ends of the capillary
(through conduction). On neglecting the thermal end effects,
Joule heating has been known to cause an increase and a radial
gradient in the fluid temperature[7–11]. For this case, the pro-
file of electroosmotic velocity remains plug-like in the bulk
region despite the increased magnitude due to the drop of liq-
uid viscosity[12]. However, both electrophoretic velocity and
molecular diffusion of analyte species become non-uniform
over the channel cross-section. These radial non-uniformities
can cause the so-called Taylor–Aris dispersion of samples
[13,14]. The problem of dispersion caused by the perturbed
profile of electrophoretic velocity has been examined theo-
retically and experimentally[15–20]. It was found that the
thermally induced dispersion is small compared to that from
molecular diffusion except at some extreme conditions. This
phenomenon is attributed to the generally small tempera-
ture difference across the capillary lumen. Only till recently
has the extra dispersion due to the radial non-uniformity of
molecular diffusion been taken into consideration in Xuan
and Li’s analytical model[21]. More recently, Peterson et al.
provided a closer look on Joule heating effects in microchip-
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Axial temperature gradients could also arise from the
variation of heat transfer condition[27] or the varia-
tion of buffer conductivity along the capillary[28]. The
latter may exist in the so-called sample pumping and
stacking processes[29]. The variation of heat transfer
condition along a capillary is often present in capillary elec-
trophoresis with thermostating, where a short length of the
capillary at each end must be left outside the thermostating
cartridge for the sample injection and detection, respectively
[18,19]. Xuan and Li[30] investigated the flow perturbation
and the sample dispersion in such a thermostated capillary
electrophoresis. By assuming step changes of fluid temper-
ature in regions with different heat transfer conditions, both
non-uniform electric field and non-uniform electroosmotic
velocity along the capillary were found in order to meet
the current and mass continuities. This modification of the
plug-like pattern of fluid electroosmotic flow could cause
significantly higher dispersion than that from parabolic-like
electrophoretic flow profile due to radial temperature
gradients. Essentially, the increased dispersion caused by
axial temperature gradients is identical to that caused by
the non-uniformity of zeta potential along the capillary
[31–34].

In the next section, the mathematical formulation of
Joule heating effects on electrokinetic transportations in
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ased and capillary-based electrophoretic separation sy
22]. These authors argued that the main influence of J
eating effects on separation efficiency is via the radial
erature profile, not the overall temperature rise in the b
olution.

In the presence of reservoir-based thermal end eff
owever, Joule heating leads to both radial and axial tem
ture variations in the electrolyte solution. Through a c
ined experimental and numerical study of the electroosm
ow in a free-air cooled capillary, Li’s group observed sh
emperature drops near the ends of the capillary and a
emperature plateau in the middle section[23,24]. Due to
he temperature dependence of electric conductivity o
iquid, these axial temperature gradients make the ele
eld non-uniform along the channel. As a result, axial p
ure gradients are induced in order to maintain the
ontinuity during the flow. This numerical prediction w
onfirmed by the observation of concave–convex–con
uid velocity profiles from the inlet to the outlet of t
apillary. In addition, Yang’s group conducted a num
al analysis of the thermal effect on electroosmotic
nd electrokinetic mass transport in both cylindrical and
icrochannels[25,26]. They predicted a concave fluid v

ocity profile in the main channel with the assumption
uniform electric field along the channel. Unfortunat

he complicated and time-consuming simulations avail
o far could not provide a straightforward understandin
oule heating effects on electrokinetic transportations. M
ver, Joule heating effects on the transport of sample

n capillary electrophoretic separations have yet to be
ed.
apillary electrophoresis is presented. A uniform h
ransfer condition is assumed along the capillary, co
ponding exactly to capillary electrophoresis with free
ooling. Analytical formulae for the perturbed tempe
ure field, applied electric potential field and flow fi
re derived in order. Then, the transient concentra
eld of sample species is analyzed based on the
eveloped Taylor–Aris dispersion theory. The inclus
f the temperature dependence of fluid properties in

ormulation should make the present model applicab
ost practical capillary-based electrophoretic separ

ystems.

. Mathematical formulation

Consider a long cylindrical capillary of internal rad
l (i.e., liquid domain) and lengthL0. The outer radii o

he glass wall and the polyimide coating (i.e., the tota
ius of the capillary) areRw and Rp, respectively. Not

hatL0 � Rp is available in typical capillary electrophor
is. Owing to the axisymmetric nature, a 2D cylindr
oordinate system (r, z) is adopted with the origin at th
apillary inlet andx-axis along the capillary centerlin
ccording to previous studies, the temperature field
apillary electrophoresis approaches steady state at s
econds[17,24,35]. The sample separation process may, h
ver, take up to tens of minutes to finish[3]. Therefore, we
tart with the steady state temperature and flow fields
er that, the transient development of concentration fie
nalyzed.
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2.1. Temperature field

As mentioned above, the Joule heat generated inside the
buffer solution is taken away in two ways: one is through the
convective and radiant cooling from the capillary outer sur-
face, and the other is through the conductive cooling from the
capillary ends (i.e., thermal end effects). These two cooling
methods are reflected in the boundary conditions of the en-
ergy equation. Neglecting the radial convective heat transport
[36], the fluid temperature is solved from:
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whereE is the local electrical field strength,uz the axial fluid
velocity, αl , kl andλl the thermal diffusivity, thermal con-
ductivity and electrical conductivity of the buffer solution,
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d2T̄

dz2 − ū

αl

dT̄

dz
− 2heq

klRl
(T̄ − T0) + λ0[1 + α(T̄ − T0)]E2

kl
= 0

(7)

where the surface temperatureT(Rl , z) in Eq. (4) has been
approximated tōT (z). The mean fluid velocity ¯u in Eq.(7) is
a constant in a uniform capillary according to the condition
of mass continuity, and will be specified later in this paper.
Note also that the local electric field is parallel to the capillary
axis and therefore dependent only onz. The requirement of
current continuity through the uniform capillary leads to

λE = λ0[1 + α(T̄ − T0)]E = J (8)

whereJdenotes the electric current density to be determined
in the next section. Then, we can assume

λ0[1 + α(T̄ − T0)]E2 ∼= J2[1 − α(T̄ − T0)]/λ0 (9)

for small values ofα(T̄ − T0), say <0.25. For even larger
temperature rise, however, higher order terms ofα(T̄ − T0)
are indispensable in Eq.(9), which will greatly complicates
the derivations hereafter. By the definitions ofZ = z/Rl and
Θ = (T̄ − T0)/�T and the substitution of Eq.(9), Eq.(7) is
written into the following non-dimensional form
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l = λ0[1 + α(T − T0)] (5)

hereλ0 is the electrical conductivity at the room tempe
ureT0 (298 K), andα the temperature coefficient. The equ
lent heat transfer coefficientheq is given by:

eq = R−1
l

[
1

kw
ln

(
Rw
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)
+ 1

kp
ln

(
Rp

Rw

)
+ 1

hRp

]−1

(6)

herekw andkp are respectively, the thermal conductivit
f the capillary wall and polyimide coating, andh the surface
eat transfer coefficient between the coolant and the c

ary outer surface. Here we have assumed a constant th
onductivity because the thermal conductivity of aqueou
ution is much less sensitive to temperature change in
arison with the electrical conductivity. Within the range

he temperature change considered in this work, the vari
n thermal conductivity is negligible.

In typical capillary electrophoresis the temperature v
tion overr is much smaller than that in the axial direct

21,22,30]. This indicatesT=T(z) only, as a good approxim
ion. Hence, the local fluid temperature can be replaced b
ross-sectional averagēT (z) (at constantz). We acknowledg
hat this approximation may not be valid for capillary el
rophoresis with thermostating[8,10]. In such cases, how
ver, the sample dispersion induced by the temperature
etween thermostated and unthermostated regions is
ronounced than that due to thermal end effects[30]. Aver-
ging each term in Eq.(1) over the capillary cross-secti
l

d2Θ

dZ2 − ūRl
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dΘ

dZ
−
(

2heqRl

kl
+ α�T

)
Θ + 1 = 0 (10a)

T = J2R2
l

λ0kl
(10b)

Noting the Dirichlet boundary conditions in Eq.(2), we
an obtain

(Z) = 1

β2

[
1 − (eA1L − 1)eA2(L−Z) + (eA2L − 1)eA1Z

e(A2+A2)L − 1

]
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=√2heqRl/kl + α�T (11b)
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hereL=L0/Rl indicates the non-dimensional length of
apillary, andL � 1 is implied. Note thatheqRl /kl in Eq.
11b)andūRl/αl in Eqs.(11c)and(11d)represent, respe
ively, the so-called Biot number and Peclet number. O
arily, (ūRl/αl ) = O(β) andβ =O(1). The fluid temperatur

s asymmetric about the middle section of the capillary s
1 �=A2 due to the flow effect. Noting exp(−x) → 0 unless
is small, the fully developed fluid temperature is appr
ated to 1/β2. This temperature is dependent on the ele
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current densityJ that will be determined in the next section.
On assuming a positive ¯u in Eq. (11a–d), the thermal en-
trance length that corresponds to the temperature reaching
99% of the fully developed temperature is estimated as 4.605
Rl /A2 (seeAppendix A for the computation). Similarly, the
length of thermal exit region, where temperatures undergo
rapid variations to adjust to the fluid temperature at the outlet
reservoir, is given by 4.605Rl /A1. Since A1 >A2 at a positive
ū (see Eqs.(11c)and(11d)), the axial temperature profile is
actually inclined to the direction of fluid flow, i.e., the down-
stream.

2.2. Applied electric potential field

In the above derivation of temperature field, the electric
current densityJ in Eq.(8) remains unknown. We can deter-
mineJ from the current continuity since the axial temperature
distribution is now available. Rearranging Eq.(8) leads to:

E = −dφ

dz
∼= J

[
1 − α(T̄ − T0)

]
λ0

(12)

whereφ is the applied electric potential. Eq.(12) can be
rewritten as

dΦ = −JRl (1 − α�TΘ)
(13)
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length, so is the fully developed fluid temperature 1/β2 (non-
dimensional) obtained earlier (see Eqs.(10b)and(11b)). As
the temperature coefficientα → 0, J approachesλ0E0 repre-
senting the electric current density without considering either
the temperature dependence of electrical conductivity (α = 0)
or the Joule heating effects. At this stage, the electric current
density is available from Eq.(15). However, there is still one
unknown parameter in the temperature field (see Eq.(11a–d))
and thus the electric field (see Eq.(12)), i.e., the mean fluid
velocity ū. We will present its formula in the next section.

2.3. Flow field

Similar to the treatment of thermal conductivity in energy
Eq. (1), we assume a constant density of the buffer solu-
tion in the analysis of flow field. Since we are only con-
cerned with the steady-state flow field, the transient terms
in Navier–Stokes equations drop off. The inertial terms are
also neglected because fluid flows in capillary electrophore-
sis are generally limited to small Reynolds numbers. Noting
that the length scale in the axial direction is much larger than
that in the radial direction, the axial velocity componentuz
has to be much higher than the radial componentur in order
to satisfy the continuity equation. In other words, the present
fluid flow is nearly unidirectional[37]. After comparing the
o con-
t
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hereΦ = φ/φ0 andφ0 =E0L0 withE0 being the electric fiel
trength externally applied to the capillary. Integrating
13) along the channel withΦ(0) = 1 andΦ(L) = 0 (i.e., the
apillary outlet is grounded) gives rise to

λ0φ0

JRl

= L−α�T

β2
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(14a
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∼= L

(
1 − α�T

β2
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(14b)

hereL � 1 and hence eA1L = O(eA2L) >> 1 are neces
ary in making the approximation in Eq.(14b). After recov-
ring�T andβ in Eq. (14b), we can get a compact formu

or the electric current density

= heq

αRlE0

(
1 −

√
1 − 2λ0E0

αRlE0

heq

)
(15)

The terms within the square root imposes a limit to
pplied electric fieldE0, beyond which the solution toJ is
navailable. This limit is attributed to the linear approxim

ion made in Eqs.(9) and(12) which differs from the limi-
ation due to the so-called thermal run-away[11,21,30]. One
an also see thatJ in Eq.(15) is independent of the capilla
rders of magnitude, Navier–Stokes equations and the
inuity equation give rise to:
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= 0 (17)

1

r

∂

∂r
(rur) + ∂uz
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= 0 (18)

z(Rl, z) = ueo (19)

uz/∂r(0, z) = 0 (20)

r(0, z) = ur(1, z) = 0 (21)

here p is the hydrodynamic pressure, and the slip
ocity ueo in Eq. (19) is calculated from the Helmholtz
moluchowshi formula[38]:

eo = −εζE

µ
(22)

hereε andµ are the dielectric constant and the dyna
iscosity of the buffer solution, respectively, andζ the zeta
otential. These properties are usually dependent on the

emperature, and thus vary along the capillary. This indic
eo=ueo(z). The above slip boundary condition applies
lectroosmotic flow with an infinitely thin electric doub

ayer, which is an excellent approximation in typical capill
lectrophoresis.

Eq.(17)indicatesp=p(z) only. However, dp/dzin Eq.(16)
s not necessarily a constant, say 0 for a purely electroos
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flow, representing the variation of temperature induced pres-
sure gradients along the capillary. Thus, the right hand side
term of Eq.(16)is independent ofr. Integrating Eq.(16)twice
with respect tor gives

uz(r, z) = ueo(z) − R2
l

4µ(z)

dp

dz

[
1 −

(
r

Rl

)2
]

(23)

At this point, dp/dz remains unknown. We average each
term in Eq.(23) over the capillary cross-section, and make
some rearrangement to get:

dp

dz
= [ueo(z) − ū]

8µ(z)

R2
l

(24)

Integrating Eq.(24)along the capillary length and noting
p(0) =p(L0) = 0 (i.e., no external pressure gradient is applied
to the two ends of the capillary) yields:

ū =
∫ L0

0
µ(z)ueo(z)dz

∫ L0

0
µ(z)dz (25)

So, dp/dz is now accessible from Eq.(24), and varies along
the capillary due to Joule heating and thermal end effects.
Further from Eq.(23) we obtain the final formula for the
axial fluid velocity

u

O ral
f mi-
c rge,
w
T ly al-
t ight
h n-
d hand
s at
t l en-
t -
t
o

u

-
p n of
d for
c used
i s are
i ature
d e def-
i .
(

u

While numerical methods (e.g., Gaussian quadrature) can
be employed to calculate the integrations in Eq.(28)for fluid
properties of any forms of temperature dependence, we con-
sider only the temperature dependence of viscosity in this
paper. Both the dielectric constant and the zeta potential are
assumed constant so as to obtain a relatively simple formula
for the mean fluid velocity ¯u. The formula of fluid viscosity
with respect to temperature is given by[9]:

µ(T ) = A exp

(
B

T

)
(29)

where A= 2.761× 10−6 K gm−1 s−1 and B= 1713 K. Ex-
panding the exponential term in Eq.(29) as a Taylor series
aroundT=T0 and retaining only the first two orders yield:

µ(Z) = µ0[1 − γΘ(Z)] (30a)

γ = B�T

T 2
0

(30b)

whereµ0 indicates the viscosity at the room temperature.
Similar to the approximation made in Eq.(9), Eq.(30a)and
(30b)is only valid for small rises of fluid temperature. Sub-
stituting Eqs.(11a–d), (12)and(30a)and(30b)into Eq.(28)
and in turn integrating it gives:
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z(r, z) = ueo(z) − 2[ueo(z) − ū][1 − (r/Rl )
2] (26)

ne can see that Eq.(26) is consistent with Ghosal’s gene
ormula to the leading order for electroosmotic flow in a
rochannel of slowly varying cross-section and wall cha
here the lubrication approximation has been employed[39].
herefore, Joule heating and thermal end effects not on

er the local electroosmotic velocity (the first term on the r
and side of Eq.(26)), but also induce axial-position depe
ent pressure-driven flows (the second term on the right
ide of Eq.(26)) in capillary electrophoresis. It is natural th
he velocity entrance length is dependent on the therma
rance length. The radial velocity componentur can be ob
ained by substituting Eq.(26) into Eq.(18) and integrating
verr once

r(r, z) = 1

2

dueo

dz

(
r

Rl

)[
1 −

(
r

Rl

)2
]

(27)

Now, let us specify ¯u in Eq. (26) by considering the tem
erature dependence of fluid properties. The calculatio
ueo/dz in Eq. (27) is straightforward and omitted here
ompactness. As dilute aqueous solutions are often
n capillary electrophoresis, we assume their propertie
dentical to water. Most of these properties are temper
ependent and thus position dependent, here. Noting th

nition of the slip velocityueo in Eq.(22), we can rewrite Eq
25)as:

¯ = −εζ
∫ L

0 E(Z)dZ∫ L

0 µ(Z)dZ
(28)
¯ = 1

− γ

β2

[
1− 1

L

(eA1L−1)(eA2L−1)(1/A1 + 1/A2)

e(A2+A2)L−1

]}−1

×
[
−εζE0

µ0

]
(31a)

¯ ∼= 1

1 − γ/β2

[
−εζE0

µ0

]
(31b)

hereL � 1 and eA1L = O(eA2L) � 1 are indispensable
ttain the simplified formula in Eq.(31b). The square brac
ted term on the right end of Eqs.(31a) and (31b) is the
lectroosmotic velocity without Joule heating effects, wh
refactor, always larger than 1, reflects the flow enhance
ffect of the fluid temperature rise. Moreover, the capil

ength has hardly any influence on the flow rate unless the
llary is short (i.e., thermal end effects become pronounc
hich is the intrinsic advantage of electroosmotic flow.

nduced pressure distributionp(z) along the capillary can b
ntegrated from Eq.(24), and is omitted here.

.4. Concentration field

The conservation of any chemical species,c, obeys the
dvection-diffusion equation

∂c

∂t
+ (u+ Uep) · ∇c = ∇ · (D∇c) (32)
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whereu is the fluid velocity vector,Uepthe electrophoretic ve-
locity vector of a chemical species, andD the molecular diffu-
sivity. Stokes–Einstein equationD=kBT/6πµa is often used
to calculate the diffusion coefficient, wherekB is the Boltz-
mann’s constant anda the radius of ionic species. The elec-
trophoretic velocity may be estimated from Nernst–Einstein
equationUep=DzveE/kBT, wherezv is the valence of ions
ande the charge of a proton. Then, we find

Uep = zveE

6πµa
(33)

Therefore, the sample transport is coupled with temperature
and velocity fields. This coupling makes it difficult, if not
impossible, to solve forc in Eq. (32) analytically. We will
demonstrate in the next section that both thermal and ve-
locity entrance lengths are much smaller than the capillary
length. Moreover, the initial sample plug is generally a dis-
tance away from the capillary inlet in capillary electrophore-
sis. Therefore, the entrance region has negligible influence
on the transport of samples.

In the fully developed region, the non-dimensional fluid
temperature is 1/β2 as provided above, the slip velocityUeo
in Eq. (22) and the electrophoretic velocityUep in Eq. (33)
are respectively specified as:

U
2

U

b In a
c ation
v
b

w re-
g
d ffect
o e-
l
d illary
c an
e

K

where K indicates the well-known dispersion coefficient
which is equivalent to but typically higher than the diffusion
coefficient in molecular diffusion. In the absence of Joule
heating effects,K is reduced toD0 denoting the diffusivity
at the room temperature. Joule heating affects the disper-
sion of samples via the enhancement of molecular diffusion
and the induced pressure-driven flow of fluid. In practice, the
perturbed electrophoretic velocity profile caused by radial
temperature gradients contributes to the sample dispersion
as well[30].

Here, we consider two types of transport processes of sam-
ples that often take place in microfluidic devices. In the first
case, the capillary is initially filled with the solvent only, and
the sample of uniform concentrationc0 is allowed to enter the
capillary at timet= 0 (i.e.,c̄(t, 0) = c0). Then, the solution to
Eqs.(37a)and(37b)is:

c̄ = c0erfc

(
z − umt

2
√

Kt

)
(38)

where erfc(x) denotes the complementary error function, and
the axial coordinatez has been recovered fromz1 =z−umt.
The intrinsic feature of the complementary error function
shows that the sample front advances with the mean migration
velocityum, and diffuses to the downstream with a diffusion
c n is
u ion
d iform
c
c
c

c

w of
t is
k
w tion is
z retic
s both
d ith a
d e
s zone
t

ef-
f
a
d s.
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d llary
o naly-
s ting
e de-
p
s into
eo = − Jεζ

µ0λ0

1 − α�T/β

1 − γ/β2 (34)

ep = Jzve

6πµ0aλ0

1 − α�T/β2

1 − γ/β2 (35)

Noting J(1− α�T/β2)/λ0≥φ0Rl /L=E0 from Eq. (14a),
othUeo andUep are enhanced by Joule heating effects.
oordinate system whose origin moves at the mean migr
elocity of the chemical speciesum = ū + Uep, Eq.(32)can
e rewritten as:

∂c

∂t
+ (ū − Ueo)

[
1 − 2

(
r

Rl

)2
]

∂c

∂z1

= Dm
∂2c

∂z2
1

+ Dm
1

r

∂

∂r

(
r
∂c

∂r

)
(36)

hereDm denotes the diffusivity in the fully developed
ion andz1 = z−umt. Taylor first used Eq.(36) to study the
ispersion of solute through a tube due to a combined e
f diffusion and convection[13]. Since then numerous r

ated papers have appeared in the literature[14,40,41]. It is
emonstrated that the mean concentration over the cap
ross-section, ¯c, to a first approximation, is governed by
quation of the form:

∂c̄

∂t
= K

∂2c̄

∂z2
1

(37a)

= Dm + (ū − Ueo)2R2
l

48Dm
(37b)
oefficientK. Behind the front, the sample concentratio
niformly c0 and the dispersion due to molecular diffus
isappears. In the second case, a sample plug of un
oncentrationc0 and width 2w0 is initially injected to the
apillary inlet (i.e., ¯c(0, z) = c0 at 0≤ z ≤ 2w0). For this
ase, the solution to Eqs.(37a)and(37b)is given by:

¯= c0

2

[
erf

(
2w0 − z + umt

2
√

Kt

)
+ erf

(
z − umt

2
√

Kt

)]
(39)

here erf(x) denotes the error function. The summation
wo error functions in Eq.(39) ensures that the sample
ept in a zone when it moves with the velocityum. Every-
here outside this zone, however, the sample concentra
ero. This feature gives rise to the method of electropho
eparations. In addition, the sample zone is expanded to
ownstream and upstream directions as if it diffuses w
iffusion coefficientK. In this paper, we will focus on th
econd case. The effects of Joule heating on the sample
ransport are analyzed below.

It is clear from previous analysis that Joule heating
ects enhance both the mean fluid velocity ¯u in Eqs.(31a)
nd(31b)and the electrophoretic velocityUep in Eq.(35), so
oes the mean migration velocityum of the chemical specie
herefore, the sample zone will take less time to arrive a
etector that is fixed at a distance away from the capi
utlet. In other words, Joule heating effects reduce the a
is time of capillary electrophoresis. However, Joule hea
ffects also contribute to the sample dispersion that is
endent on

√
Kt in Eq. (39). If the elution time,tm, for the

ample to migrate from the inlet to the detector is taken
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consideration, we find

√
Ktm =

√√√√[Dm

um
+ (ū − Ueo)2R2

l

48Dmum

]
Ldet (40)

whereLdet is the distance from the capillary inlet to the
detector. Clearly, the first term in the square bracket repre-
sents the dispersion due to the increased molecular diffusion,
while the second one gives the dispersion due to the pressure-
driven flow caused by thermal end effects. As demonstrated
in Appendix B, the increase in molecular diffusion is partly
balanced by the increase in migration velocity. Consequently,
the real increase in the sample dispersion is reflected solely by
the increase of fluid temperature. The magnitude of ¯u − Ueo
in Eq.(40) is very sensitive to the capillary length, and could
be negligible if the capillary is sufficiently long where thermal
ends effects are essentially small (see alsoAppendix B). For
short capillaries like those microfabricated in lab-on-a-chip
devices, however, the sample dispersion due to the induced
pressure-driven flow has to be considered.

3. Results and discussion

In this section, we examine quantitatively the Joule heat-
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Fig. 1. Comparison of the electric current through the buffer solution with
(solid line) and without (dashed line) considering Joule heating effects, re-
spectively.

Fig. 2. Axial distributions of the average fluid temperature (solid line) and
the local electric field (dashed line). The externally applied electric field is
E0 = 36 KV/m. A 5 cm long capillary is chosen for an illustration.

ery electric field. Moreover, the higher the electric field, the
larger are the elevations in the fluid temperature and the elec-
tric current. This phenomenon has been observed previously
[24,27,42]. Note that the increase of electric current (actually
the electrical conductivity) has been a method to estimate the
rise of fluid temperature for a long time[18,19,43].

Fig. 2 shows the axial distribution of the average fluid
temperature at an applied electric fieldE0 = 36 KV/m in a
5 cm long capillary. Note that the typical capillary length
in capillary electrophoresis is tens of centimeters. For
the capillary-based electrophoresis that takes place in a
lab-on-a-chip device, however, the channel is usually several
centimeters in length. We have pointed out earlier that the
fluid temperature in the fully developed region is indepen-
dent of the capillary length if this length is much larger than
the capillary internal diameter. As the capillary is shortened,
reservoir-based thermal end effects become pronounced. The
fluid temperature in the main part of the capillary will thus be
ng and thermal end effects on capillary electrophoresis
esultant alterations in the steady state temperature
pplied electric potential field, flow field, and the tr
ient concentration field are demonstrated with the an
cal formulae derived above. Unless otherwise indica
uid properties and working parameters used in the
ulations are: thermal conductivities,kl = 0.6 W m−1 K−1,
w = 1.5 W m−1 K−1 and kp = 0.15 W m−1 K−1; electri-
al conductivity, λ0 = 0.15 S m−1 and α = 0.02 K−1; di-
lectric constant,ε = 80× 8.854× 10−12 CV−1 m−1; radii,
l = 50�m, Rw = 160�m and Rp = 180�m; Zeta po

ential, ζ =−30 mV; surface heat transfer coefficie
= 130 W m−2 K−1 [9,18,19,22]. Note that the elec

rophoretic velocity is calculated from Eq.(35) without the
eed of using the electrophoretic mobility. We first calcula

he electric current density from Eq.(15). The mean fluid ve
ocity was then found from Eqs.(31a)and(31b). After that,
he fluid temperature in Eq.(11a–d)was obtained. The a
al fluid velocity in Eq.(26) and the radial fluid velocity i
q. (27) were therefore available. Finally, the sample c
entration was predicted from either Eqs.(39)or (40). More
ccurate values of the electric current density and the m
uid velocity can be solved simultaneously from the coup
qs.(14a), (14b), (31a)and(31b), which are necessary on t
ircumstances of short capillaries. These values were us
redict the axial pressure distribution from Eq.(24).

Fig. 1shows the electric current through the buffer solu
t different electric fields. In the absence of Joule heatin

ects, the electric currentλ0E0πR2
l is simply a linear functio

f the applied electric field. On considering the Joule hea
ffects, Eq.(15)predicts a higher electric currentJπR2

l at ev-
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Fig. 3. Mean fluid velocity at different applied electric fieldsE0. This ve-
locity has been normalized by the value without considering Joule heating
effects. The curve shows the enhancement of fluid velocity due to Joule
heating effects. All working parameters are identical to those inFig. 2.

decreased. Identical with our previous numerical and exper-
imental studies[21,24], the axial temperature profile is not
symmetrical, inclined to the downstream due to the advective
effect of fluid flow. Sharp temperature drops are predicted
close to the capillary ends while a high temperature plateau
exists in the middle section. While the thermal entrance
length is of approximately 20 times of the capillary internal
radius, the thermal exit length is of only about five times of
the capillary internal radius.Fig. 2 also displays the axial
distribution of the local electric fieldE. In order to meet the
current continuity, the electric fields close to capillary ends
have to be significantly higher than the nominal electric fiend
E0 applied externally. In the middle section of the capillary,
however, the local electric field is a little bit lower thanE0 as
the total voltage drop over the whole capillary is fixed[30].

Fig. 3shows the enhancement of mean fluid velocity (i.e.,
the flow rate per unit cross-sectional area) in a 5 cm-long
capillary due to Joule heating and thermal end effects. This
velocity has been normalized by the value without consid-
ering Joule heating effects. Therefore, the normalized fluid
velocity corresponds exactly to the prefactor of the right hand
side term in Eqs.(31a)and(31b). Similar to the trend of elec-
tric current with respect to the applied electric fieldE0, the
mean fluid velocity is increased more significantly at higher
electric fields[24,27,42]. Therefore, Joule heating induced
fl t and
r . For
e in
t rom
2 ty
i

e-
l ry
a city
i lary
e e in

Fig. 4. Longitudinal distributions of the axial fluid velocity at the capillary
wall (solid line) and along the capillary axis (dashed line), respectively. All
working parameters are identical to those inFig. 2.

Fig. 2) is partly counterbalanced by the higher fluid viscosity
due to the temperature drop (see the solid line inFig. 2). As
a result, the slip velocity is higher close to the capillary ends,
where the axial fluid velocity along the capillary centerline is
lower than the rest. In other words, axial pressure gradients
are brought about to meet the requirement of mass continuity.
The sine-shaped pressure distribution along the capillary is
displayed inFig. 5. Positive pressure gradients appear close
to the capillary ends making the local fluid velocity profile
concave over the cross-section. A negative pressure gradient
exists in the middle section of the capillary so that the veloc-
ity profile is slightly convex, which has been experimentally
observed[24,44]. Fig. 6 demonstrates different radial pro-
files of the axial fluid velocity at different positions along the
capillary. The convex curvature in the middle section is much
smaller than the concave curvature close to capillary ends.

Fig. 7 shows the distribution of sample concentration
averaged over the cross-section, ¯c, when the sample zone

F ther-
m s are
i

uid temperature increase can enhance the throughpu
educe the separation time of capillary electrophoresis
xample, atE0 = 36 KV/m, the average fluid temperature
he main part of the capillary is increased by only 5% (f
98 to 313.5 K, seeFig. 2). However, the mean fluid veloci

s increased by more than 40%.
Fig. 4shows the longitudinal distribution of axial fluid v

ocity uz in a capillary. Both the velocity along the capilla
xis and the one at the capillary wall (i.e., the slip velo

n Eq. (22)) are demonstrated. In regions close to capil
nds, the rise of local electric field (see the dashed lin
ig. 5. Axial distribution of the pressure induced by Joule heating and
al end effects in capillary electrophoresis. All working parameter

dentical to those inFig. 2.
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Fig. 6. Radial profiles of the axial fluid velocity at two different positions
of the capillary. The dashed line shows the profile one internal radius away
from the capillary inlet. The solid line gives the profile in the middle of the
capillary length. All working parameters are identical to those inFig. 2.

migrates through the capillary. As the total mass of the sample
is conserved during the transportation, the area underneath
every “pulse” remains invariant. Consequently, the sample
zone becomes wider if its peak concentration is lowered,
meaning that the sample is dispersed. One can see that Joule
heating effects make the sample zone move faster. Also, the
sample dispersion is more significant after the same elution
time, which can be identified from the decrease of the peak
concentration (solid lines) compared to that without Joule
heating effects (dashed lines). Whereas the increase of migra-
tion velocity of a sample could reduce the separation time in
capillary electrophoresis, the larger sample dispersion might
decrease the separation efficiency. In order to figure out this,
Fig. 8compares the mean concentration and the elution time

F ferent
t the
c utions
w
a radii
( rs
a

Fig. 8. Mean concentration over the cross-section with respect to the elution
time when the sample zone passes by the detector. The solid line denotes the
sample transport with the consideration of Joule heating effects. The dashed
line corresponds to the case without Joule heating effects. The detector is
0.5 cm away from the capillary outlet. All other working parameters are
identical to those inFig. 7.

of the sample when it passes by a detector fixed at a distance
away from the capillary outlet. On account of Joule heating
effects, it takes much less time to transport the sample to the
detector. Also, the sample zone passes by the detector more
quickly than that without Joule heating effects. However, we
notice that the peak concentration at the detector is slightly
lower (i.e., the sample zone is wider, and thus has larger
dispersion) when Joule heating effects are considered.

Fig. 9 shows the comparison of the theoretical (solid
curve) and the experimental (symbols) concentration profiles

F e of
s and
D ro-
fi the
h from
t
R -
p
e -
i

ig. 7. Mean concentration of a sample over the cross-section at dif
imes. The solid lines indicate the distributions along the capillary with
onsideration of Joule heating effects. The dashed lines are the distrib
ithout Joule heating effects. The charge and radius of ions iszv =−1 and
= 0.8 nm, respectively. The width of the initial sample plug is 5 internal

2w0 = 5Rl ), and its concentration isc0 = 1. All other working paramete
re identical to those inFig. 2.
ig. 9. Comparison of theoretical (solid curve) concentration profil
ample passing by the detector with that observed in Delinger
avis’s experiments[45]. The peak height of the experimental p
le is assumed the same as that of the theoretical profile while
eight of the base line is set zero. Working parameters different

hose given in the text include:E0 = 25 KV/m, L0 = 60 cm, Ldet= 51 cm,

l = 37.5�m, Rw = 167.5�m, Rp = 187.5�m, the width of the initial sam
le plug 2w0 = 4.4 mm, EO mobility 5.28× 10−8 m2 V−1 s−1 at 22◦C,
lectrical conductivityλ0 = 0.263 S m−1 at 22◦C, and molecular diffusiv

ty D0 = 1.25× 10−9 m2 s−1 at 22◦C [45].
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when the sample (acetone as the marker of electroosmotic
flow [45]) passes the detector. The experimental data were
taken from Delinger and Davis’s measurements (middle left
subfigure inFig. 7of ref. [45]). As these authors did not pro-
vide the scale of their concentration data, we assumed that
the peak height of the experimental profile coincides with
that of the theoretical profile while the height of the base
line is set to be zero. FromFig. 9 one can see that both the
shape of concentration profile and the elution time predicted
from the proposed model in this paper are in close agree-
ment with the experimentally measured profile. Therefore,
the present model provides accurate evaluation of the Joule
heating effects on electrokinetic transportation in capillary
electrophoresis.

4. Conclusions

In ideal capillary electrophoresis, the profiles of fluid elec-
troosmotic flow and species electrophoretic flow are both
plug-like. Molecular diffusion is the only source of sample
zone broadening. In practice, however, many factors can af-
fect the above flow patterns, of which Joule heating is one
that always exists. We have developed an analytical model to
study Joule heating and thermal end effects in capillary elec-
trophoresis. By de-coupling the energy equation and the mo-
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Appendix A

According to its definition, the non-dimensional thermal
entrance lengthδ is solved from

0.99
1

β2 = 1

β2

[
1− (eA1L − 1)eA2(L−Z) + (eA2L − 1)eA1Z

e(A2+A2)L − 1

]
(A.1)

Rearrange Eq.(A.1),

0.99=1−e−A2δ − e−A1L−A2δ + eA1(δ−L) + eA1δ−(A1+A2)L

1 − e−(A1+A2)L

(A.2)

Noting L � δ and L � 1, we neglect all exponential
terms involving the power of−L. Then, the last equation
is reduced to

e−A2δ = 0.01 (A.3)

It is now straightforward to get

δ = ln 100/A2 (A.4)
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d -
entum equation, close-form formulae have been derive
he steady state temperature field, applied electric pote
eld, pressure field, velocity field and the transient conce
ion field. We have also obtained compact analytical form
or the electric current and the mean fluid velocity (i.e.,
olume flow rate per unit cross-sectional area). These
ulae could provide a clear understanding of Joule he
nd thermal end effects on the transport of heat, electr
omentum and mass species in capillary electrophores
With the analytical formulae presented in this paper

ave demonstrated graphically that, due to the therma
ffects, sharp temperature drops exist close to capillary
here electric fields rise significantly. Axial-position dep
ent pressure gradients have to be induced to realize the
ontinuity. As a result, concave–convex–concave fluid ve
ty profiles appear from the inlet to the outlet of the capill
hese predictions are consistent with our previous nume
imulation and have already been verified experimental
ddition, Joule heating effects enhance the transport of
les, which could reduce the analysis time in capillary e

rophoretic separations. However, Joule heating and the
nd effects also increase the sample dispersion, and th
rease the separation efficiency.
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Recovering the dimensional form and evaluating the n
al logarithm finally gives rise to the thermal entrance len
rovided in the text.

ppendix B

Noting the non-dimensional fluid temperature in the f
eveloped region is 1/β2, the diffusion coefficient in this re
ion is calculated as:

m = D0
1 + �T/T0β2

1 − γ/β2 (B.1)

hereD0 =kBT0/6πµ0a indicates the diffusivity at the roo
emperature. The summation of Eqs.(31b)and(35) leads to
he mean migration velocity of chemical species

m = u0
1

1 − γ/β2 (B.2)

0 = −εζE0

µ0
+ zveE0

6πµ0a
(B.3)

hereu0 is exactly the migration velocity in the absence
oule heating effects, and Eq.(14b)has been invoked in th
anipulation sinceL � 1 in typical capillary electrophore

is. For short capillaries like those fabricated in a microc
owever, full formulae for both the temperature field in
11a)and the electric field in Eq.(14a)have to be used. Th
ispersion due to molecular diffusion in Eq.(40)is now spec
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ified as:√
Dm

um
Ldet =

√
D0

u0
Ldet(1 + �T/T0β2) (B.4)

Therefore, Joule heating effects increase the diffusion in-
duced sample dispersion via only the rise of fluid temperature.
Also from Eq.(14b)whenL � 1, the slip velocity in Eq.(34)
through a long capillary is reduced to

Ueo = −εζE0

µ0

1

1 − γ/β2 (B.5)

which is identical to the mean fluid velocity ¯u in Eqs.(31a)
and (31b). As a result, the dispersion due to the induced
pressure-driven flow in Eq.(40)is negligible if the performed
capillary is sufficiently long.
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